Efficient techniques for model checking:
Symbolic techniques (ROBDD)

dr. Istvan Majzik
dr. Andras Pataricza
dr. Tamas Bartha

BME Department of Measurement and Information System



Where are we?

e Lower-level formalisms )
(KS, LTS, KTS) Temporal logics:
e Higher-level formalisms PLTL, CTL, CTL*

Formal model Formalized requirements

Basic

algorithms i
Model checker

OK Counterexample




Recap: Known techniques for model checking

e PLTL model checking:

= Tableau method: Decomposition based on the model

s|l-pUqg
s |-q s|-p, s|-X(pUaq)
s|-p,s;|I-pUQq sl-p, s, l-pUq

= Automata-based approach (auxiliary)

e CTL model checking:

= Semantics-based approach: Iterative labeling of states
E(P U Q) E(P U Q)

OC{C\ Q"

P.Q}
E(PU Q)



Recap: CTL model checking with state labeling

e |abel states with subformulas based on Sat(..)

computation:
AF(PAE(QU @

N v

N /

o State labeling: Where does a formula hold?
= Initially: KS labeled with atomic propositions

= [teratively: Labeling with more complex formulas
e If a state is labeled with p and g, then we can label with
—p, prq, EXp, AXp, E(pUQq), A(pUQq)
e Incremental labeling algorithm based on the semantics of
operators




Recap: Iteration of the E(P U Q) labeling

Cf {jl =<DP \{\ P
C{‘_O Q) Flrst steﬁ C{ Igl?lz?b Q)

Kripke structure
E(P U Q)

with initial labeling

C\ Q'

e Exploiting:

E(P U Q) = [Second /ﬁ C{ {EP(F?L -
A EX

Qv (PAEXE(PUQ)) step: P

E(PUQ) E(PUQ)
P P

e Iteration continues .P .\‘ .©®

while set of states
grows (until a fixed _ d‘—. {P.Q}
point is reached) [Thlrd step: E(PU Q)

PAEX




Problems

e The state space to traverse can be huge

= Concurrent systems exhibit a large state space:
Combinatorical explosion in the number of possible interleavings of
independent sequences

P1 P2 P3 Full state space

e How can we analyze large state spaces?
= Promise: CTL model checking: 1029, sometimes even 10190 states
= What kind of technique can deliver this promise?



Outlook: Concurrent behavior of two
automata

Direct product of automata,
interleaving, synchronization



Example: Operation of asynchronous automata

e System composed of two e (Direct) product automaton:

(independent) automata state space of the system
Yol oSl
N
P e %
o States of the automata: o Set of states:

A ={m;, my}, B ={sy, S,} C=AxB
C = {ms;, mss,, M;S;, MyS,}



Synchronizations and guards simplify the model

e Synchronization: taking the e Guards: disable certain
transitions at the same time transitions

-~ -
-
|
A |
|

9
§

e E.g. "A and B takes the e E.g. "B can only take the
transition at the same time transition if A is in state m,”
if their state index is the
same”



Example: Pedestrian

Red
is_b == false
Is_r = true Is_r = false

Green

press?
Is_r = false

NotPressed

IS _r==true
press!

is_b = false is_b = true

Pressed

light with button

« Synchronization
(press!, press?)

Guard
(Is_r == true)

[.

10



Example: Alternative paths

(X,¥,9)
T1 T2
x=1 y=1
g=g+2 g=g*2

Local variables: x and y
Global variable: g

(1,1,4) (1,1,2) 11



Example for large state space:
Dining philosophers

e Concurrent system
= May have deadlock
= May have livelock

e State space grows fast

#Philosophers #States
16 4,7 - 1010
28 4,8 - 1018
200 > 1040
1000 > 10200

264 = 1,8 . 1019

Source: wikipedia

With smart (but not task-specific)
state space representation:

~100 000 philosophers, i.e.

1062900 states can be checked!


http://upload.wikimedia.org/wikipedia/commons/6/6a/Dining_philosophers.png
http://upload.wikimedia.org/wikipedia/commons/6/6a/Dining_philosophers.png

Overview of the tec

e CTL model checking: Symbolic

hnigues to learn

technique

Semantics-based technique

Symbolic technique

Sets of labeled states

Characteristic functions
(Boolean functions):
ROBDD representation

Operations on sets of states

Efficient operations on ROBDDs

e Model checking of invariants: Bounded model checking
= Searching satisfying valuations for Boolean fordmulas with SAT

techniques
= Model checking to a given depth:

Searching for counterexamples with bounded length
o A detected counterexample is always valid

e No counterexamples does not im

ply correctness

13



Symbolic model checking



Recap: Iteration using set operations

e We expand the labeling using operations on sets
= Initial set: states already labeled by subformulas
= Expanding the labeling:
e E(p UQq): “At least one successor is labeled ...”
e A(p U qg): “All successors are labeled ..."

= This way we can label preceding states

e How can we define the set of preceding states?
= Based on set of already labeled states Z: At least one |
preg(Z) = {seS | there exists s’ such that (s,s")eR and s’ez{ S“fgg:;%r IS
pre,(Z) = {seS | for all s" such that (s,s")eR we have s'eZ =
e Example: E(P U Q): ﬁ All successors
= Initial set: Z, = {s | QeL(s)} g
= Expansion: Z,,= Z;u (preg(Z) n {s | PeL(s)})

Labeled so far Predecessors o]\f
[ ﬁ already labeled states % labeled P ]

= End of the iteration: if Z,.,= Z (fixedpoint)

~

15



Main idea

e Representation of and operations on sets of states:
With Boolean functions instead of enumeration

= Encoding a state with a bit-vectors

 To encode a set of states S we need at least n=| log,|S| | bits,
so choose n such that 2">|S|

* Encoding a set of states with an n-ary Boolean function:

Characteristic function

e The function should be true for a bit-vector /ff the state
encoded by the bit-vector is in the given set of states

e Characteristic function: C: {0,1}"—{0,1}
= We will perform operations on characteristic functions
instead of sets

16



e For a state s:

Characteristic functions

C.(X1, X5, «oey Xp)

Let the encoding of s be the bit-vector (u,, u,, ..., u,), where u,e{0,1}

Goal: C (X1, Xy, -

., X,) should return be true only for (u;, u,, ..., u,)

Construction of C(Xy, X,, ..., X;,): with operator A
e X is an operand if u=1
e —X; is an operand if u;=0
Example: for state s with encoding (0,1): C.(X{, X5) = = X; A X,

e For a set of state YcS: Ci(Xy, X5, -0y Xi)

Goal: Cy(Xy, Xy, -

., X,) should be true for parameters (uy, U, ..., U,)

iff (uy,Uy,..., u)eY
Construction of Cy(Xy, Xy, ..., X;,):

Cy(Xy, X5, ooy X0)=V ey Co(Xq, X5, vy X))

e For sets of states in general:

Cyow= Gy v Gy, Cyw= Gy A Gy

17



Example: Characteristic function of states

(0,0) Characteristic functions of states:

e State s1:
(0,1) Ca(Xy) = (=X A —y)
‘@ State s2:

Ca(X,y) = (=x A Y)
(1,1) State s3:

Variables: x, y Cas(X,y) = (X AY)

Characteristic function for a set of states:

Set of states {s1,s2}:
C{sl,sZ} =Cqy vCq = (=X A=Y) V(=X AY)

18



Characteristic functions (cont'd)

e [or state transitions: C

H——®
(Uy, Uy, ..., Uy) (V1, Vo, -vy V))

r=(s,t) transition, where s=(uy, u,, ..., u,) and t=(vy, vy, ..., V,,)

= Characteristic function in the form C.(xy, X5, ..., Xo, X'y, X5, oy X))
e ,Primed” variables denote the target state
Goal: C. should be true /f/f x;=u; and x/'=v,

Construction of C.:
Cr = Cs (Xll X2/ by / Xn) N Ct(Xlll XIZI g X’n)

19



Example: Characteristic functions of transitions

(0,0)

State s1:
Ca1(X,Y) = (=X A —y)
State s2:

Co(Xy) = (=x A Y)

Transition (s1,s2)eR:
C(sl,sZ) = (=X A=Y) A (=X AY)

Transition relation:

ROXGYXY) = (-XA=y A = XA Y) v
V(XA YA XA YY)V
v XA YA=XA Y)V
V(I XA YA XASY)

20



Characteristic functions (cont'd)

e Construction of preg(Z): preg(Z)={s | 3t: (s,t)eR and teZ}
Representation of Z: C,

Representation of R: Cy=V,_rC.
prec(Z): find predecessor states for states of Z

where 3,C = C[1/x] v C[0/x] (,,existential abstraction®)

e Model checking with set operations:
reduced to operations with Boolean functions!

= Union of sets: Disjunction of functions (V)

= Intersectin of sets: Conjunction of functions (A)
= Construction of prec(Z): Complex operation (existential abstraction)

21



Representation of Boolean functions

Canonic form: ROBDD
Reduced, Ordered Binary Decision Diagram

“Phases” (overview):
e Binary decision tree: to represent binary decisions
e BDD: identical subtrees are merged

e OBDD: evaluation of variables in the same order
on every branch

e ROBDD: reduction of redundant nodes
= If both two outcomes (branches) lead to the same node

22



ROBDDs in detail

23



Binary decision trees

e Final result is determined
by a series of decisions

e Binary decisions in every
node
= Yes/No branches

e Final result after every
necessary decision has
been made:

= Yes (1) / No (0)

There are multivalued
extensions

Do | have a car?

/
Do | have a »

bicycle? # Do | have fuel?

Are the batteries
OK?

©

I’'ll stay /
athome 7/

I’'ll stay
at home I'll go

I’'ll stay I'll go
at home

24



Boolean functions as binary decision trees

e Substitution (valuation) of a variable is a decision

e Notation: if-then-else
X —>f, fo=XAf) v (=XxAf)
= The result is the value of f, if x is true (1)

= The result is the value of f, if x is false (0)
= X is the test variable, checking its value is a test

e Shannon decomposition of Boolean functions:
f=x—f[1/x], f [0/X] _
let f, = f [1/x] ; f, = f [0/x] f_X_)fX'fx

= The function is decomposed with if-then-else
= The test variable is reduced, will not appear in f,, f,
= Repeat until there is a variable left

25



Types of decision trees

Example:
f(x,y)

Potential values of f(x,y)
should be specified in the 01 01 on 0/1
boxes (leaf/terminal nodes)

fix=1, y=1] fix=1, y=0] f{x=0, y=1] f{x=0, y=0]

e We get a binary decision diagram (BDD),
if we merge all identical subtrees

e We get an ordered binary decision diagram (OBDD),
if we use test variables in the same order during decomposition

e We get a reduced ordered binary decision diagram (ROBDD),
if we remove redundant nodes (where both decisions lead to the same
node)

26



Example:
Transformation of a binary decision diagram

Binary Reduced
decision tree .~ decision tree

27



ROBDD properties

e Directed, acyclic graph with one root and two leaves
= Values of the two leaves are 1 and 0 (true and false)
= Every node is assigned a test variable

e From every node, two edges leave
= One for the value 0 (notation: dashed arrow)
= The other for the value 1 (notation: solid arrow)

e On every path, test variables are in the same order
e Isomorphic subgraphs are merged

e Nodes from with both edges would point to the same node
are reduced

For a given function, two ROBDDs with the same variable
ordering are isomorphic



Variable ordering for ROBDDs

e Size of ROBDD

= For some functions (e.g. even number of 1's) very compact
= For others (such as XOR) it may have an exponential size

e The order of variables has a great impact on the size!
= A different order may cause an order of magnitude difference
= Problem of finding an optimal ordering is NP-complete (—heuristics)

e Memory requirements: If the ROBDD is built by combining
functions one by one, we will store intermediate nodes
which can be reduced later

Size of
ROBDD

Steps of
> construction

29




Example: Manual construction of an ROBDD

Let o f= a—>fa, fg
f=(aeb)a(ced) £ =(lob)a(cad), f,=(0cb)r(ced)
Variable ordering: a, b, ¢, d o fo=bo>fmfap

fop= (loD)a(cad) = (cod)

fap=(1=0)A(c=d) = 01" Fnd . are
° f:a_= b_>fg,bl fg,g is'omorph_i'E!

fop = (0O=1)A(cead) = 0 /
fyp = (0=0)A(ced) = (cd)
° fa,b = C_)fa,b,CI fa,b,g
fa,b,c = (1<:>C|), fa,b,g=(0<:>d)
° fa,b,c = d_)fa,b,c,d/ fa,b,c,g
1:a,b,c,d =(lel) =1,
1:a,b,c,d_= (1<0) =0

* fabc= d>Fabcar fabcd

fabca = (01)=0, , f, ;. =(0<0)=1

30



Storing an ROBDD in memory Auxilary

e Nodes of the ROBDD are u i I h
identified by Ids (indices) 0
e The ROBDD is stored in a table
T: u— (i,lh): 1
= U: index of node
= i: index of variable (x;, i=1...n) - 4 1 0
= |: index of the node reachable 3 4 0 1
through edge corresponding to 0O
= h: index of the node reachable 4 3 2 3
m through edge corresponding to 1
-/ 5 2 4 0
u 6 2 0 4
“@/® ko) 7 11|56

31



Auxilary

Storing an ROBDD in memory

32



Auxilary

Handling ROBDDs 1.

e Defined operations:
= init(T)
e Initializes table T
e Only the terminal nodes 0 and 1 are in the table

= add(T,i,l,h):u
e Creates a new node in T with the provided parameters
e Returns its index u

= var(T,u):i
e Returns from T the index i of the node u

= low(T,u):l and high(T,u):h

e Returns the index | (or h) of the node reachable from the node
with index u through the edge corresponding to 0 (or 1)

33



Auxilary

Handling ROBDDs 2.

e To look up ROBDD nodes, we use another table
H: (i,l,h) — u
e Operations:
= jnit(H)
e Initializes an empty H
= member(H,i,l h):t
e Checks if the triple (i,I,h) is in H; t is a Boolean value
= |ookup(H,i,l,h):u
e Looks up the triple (i,l,h) from table H
e Returns the index u of the matching node

= insert(H,i,|,h,u)
e Inserts a new entry into the table

34



Auxilary

Handling ROBDDs 3.

Creating nodes: Mk(i,l,h)
e Where i is the index of variable,
| and h are the branches
e If I=h, i.e. the branches would
lead to the same node
= then we dont need new a node
= we can return any branch L

e If H already contains a triple u=add(T,1,1,h);
(l,l,h) insert (H,l,l,h,U) ’

Mk(i,1,h){
if 1=h then
return 1;
else if member (H,i,1,h) then
return lookup(H,i,1l,h);

, return u;
= then we don’t need a new node

— There exists an isomorphic
subtree, return that }

e If H does not contain such a
triple (i,l,h)
= then we need to create it and
return its index

35



Handling ROBDDs 4. Auxilary

Building an ROBDD: Build(f) and Build’(t,i) recursive helper
function

Build (f) {
init(T); init(H) ;
return Build’ (£,1);

}
_ _ Reached a terminal node
bl (fisgee) i %E (every variable bound) }
if i>n then
if t==false then return 0 else return 1
else {vO0 = Build’ (t[0/x;],i+1);
vl Build’ (t[1/x;],i+1); Recursive building;

return Mk (i,vO0,vl)} Mk() will check
Isomorphic subtrees

Will traverse variables
recursively

36



Operations on ROBDDs

e Boolean operators can be evaluated directly on ROBDDs
= Variables of the functions should be the same in the same order

e Equivalence for functions f, t (op is a Booleean operator):
1. fopt=Kx->f,f)op(x—->t,t) = x—(fiopt), (f,opt)

op

f® t® fopt®

fx@{ @fx tx@/ @tx fopt@ @
ARV /

f, op t,

37



Operations on ROBDDs (cont'd)

Boolean operators can be evaluated directly on ROBDDs
= Variables of the functions should be the same in the same order

Equivalence for functions f, t (op is a Booleean operator):
1. fopt=Kx->f,f)op(x—->t,t) = x—(fiopt), (f,opt)

Additional rules (missing variables due to reduction):

2. fopt=Kx->f,f)opt=x—(fiopt), (f,opt)

3. fopt=fop(x—>t,t)=x—->(fopt), (fopt)

Based on these rules App(op,i,j) can be defined recursively
= where i, j: indices of the root nodes of operands

Drawback: slow
= worst-case 2" exponential

38



Accelerated operation

e Let G(op,i,j) be a cache table that contains the
results of App(op,i,j) (these are nodes)

e The four cases of the algorithm:

= Both nodes are terminal: return a terminal based on the
Boolean operation (e.g. 0 A 1 = 0)

= If the variable indices for both operands are the same,
then call App(op,i,j) with the 0 branches and with the 1
onhe branches based on equivalence 1.

= If one variable index is less, then that node is paired
with the 0 and 1 branches of the other based on
equivalence 2. or 3.

39



Pseudo-code of the operation Auxilary

Apply (op, £, t) {

init (G) ;

return App(op, £, t);
}

App (op,ul ,u2) {

if (G(op,ul,u2) '= empty) then return G(op,ul,u2);
else if (ul in {0,1} and u2 in {0,1}) then u= op(ul,u2);
else if (var(ul) = var(u2)) then

u=Mk (var (ul) , App(op,low(ul) ,low(u2)),
App (op,high (ul) ,high(u2))) ;

else if (var(ul) < var(u2)) then

u=Mk (var (ul) , App(op,low(ul) ,u2) ,App(op,high(ul) ,u2));
else (* if (var(ul) > var(u2)) then *)

u=Mk (var (u2) , App(op,ul,low(u2)) ,App(op,ul, high(u2)));
G(op,ul,u2)=u;
return u;



Example: Performing operation (fat)




- Example: Performing operation (fAt)

42



Example: Performing operation (fat) .
fAt




Example: Result of operation (fAt)

A t
X &)
/
/
/
X2 /
/
/
X3 <3> () =
\ Y
\\ /
/
X \
4 ,<\
/ \
/
/
« |/
> /
/

44



Restricting a variable in an ROBDD

Bind variables with constants (e.g. (—x A y)y=ll= —x):
The value of X should be b in the ROBDD rooted in u

Restrict(u,j,b) {
return Res (u,j,b) ; If we are lower than the

) variable to bind, the original
subtree is returned

Res(u,j,b) {
if var(u) > j then return u;

ILEGD o TERW) S 3] R0 " If we are higher, then we need
ST s (TR () 4 L recursive building
Res (low(u) ,]j,b),
Res (high(u),j,b));
else If we are at the variable to bind,}
if b=0 then L we process only the branch b
return Res(low(u),j,b)
else

return Res (high(u),j,b);

45



Summary: Model checking with ROBDDs

e Realizing model checking:
= Model checking algorithm: Operations on sets of states (labeling)
= Symbolic technique: Instead of sets, use Boolean characteristic functions
= Efficient implementation: Boolean functions handled as ROBDDs
o Benefits
= ROBDD is a canonical form (equivalence of functions is easy to check)
= Algorithms can be accelerated (with caching)
= Reduced storage requirements (depends on variable ordering!)

Dining philosophers: \
Number of Size of state | Number of
Philosophers | space ROBDD nodes
16 4,7 -1010 747
28 4,8 -1018 1347

vnstead of storing 10! states the ROBDD takes ~21kB! /

46




